Rational Krylov for Large Nonlinear Eigenproblems
نویسنده
چکیده
Rational Krylov is an extension of the Lanczos or Arnoldi eigenvalue algorithm where several shifts (matrix factorizations) are used in one run. It corresponds to multipoint moment matching in model reduction. A variant applicable to nonlinear eigenproblems is described.
منابع مشابه
Rational Krylov for Nonlinear Eigenproblems, an Iterative Projection Method
In recent papers Ruhe [10], [12] suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similar to the Arnoldi method presented in [13], [14] the search space is expanded b...
متن کاملProjection Methods for Nonlinear Sparse Eigenvalue Problems
This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.
متن کاملNleigs: a Class of Robust Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems∗
A new rational Krylov method for the efficient solution of nonlinear eigenvalue problems, A(λ)x = 0, is proposed. This iterative method, called fully rational Krylov method for nonlinear eigenvalue problems (abbreviated as NLEIGS), is based on linear rational interpolation and generalizes the Newton rational Krylov method proposed in [R. Van Beeumen, K. Meerbergen, and W. Michiels, SIAM J. Sci....
متن کاملCompact Rational Krylov Methods for Nonlinear Eigenvalue Problems
We propose a new uniform framework of Compact Rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For many years, linearizations are used for solving polynomial and rational eigenvalue problems. On the other hand, for the general nonlinear case, A(λ) can first be approximated by a (rational) matrix polynomial and then a convenient linearization is us...
متن کاملA Global Arnoldi Method for Large non-Hermitian Eigenproblems with Special Applications to Multiple Eigenproblems∗
Global projection methods have been used for solving numerous large matrix equations, but nothing has been known on if and how a global projection method can be proposed for solving large eigenproblems. In this paper, based on the global Arnoldi process that generates an Forthonormal basis of a matrix Krylov subspace, a global Arnold method is proposed for large eigenproblems. It computes certa...
متن کامل